บทที่ 2 อะตอมเเละสมบัติของธาตุ

แบบจำลองอะตอม
แบบจำลองอะตอมของจอร์น ดอลตัน 
 
ในปี พ.ศ. 2346 (ค.ศ. 1803) จอห์น ดอลตัน (John Dalton) นักวิทยาศาสตร์ชาวอังกฤษได้เสนอทฤษฎีอะตอม
เพื่อใช้อธิบายเกี่ยวกับการเปลี่ยนแปลงของสารก่อนและหลังทำปฏิกิริยา รวมทั้งอัตราส่วนโดยมวลของธาตุที่รวมกันเป็นสารประกอบ ซึ่งสรุปได้ดังนี้
1. ธาตุประกอบด้วยอนุภาคเล็กๆหลายอนุภาคเรียกอนุภาคเหล่านี้ว่า “อะตอม” ซึ่งแบ่งแยกและทำให้สูญหายไม่ได้
2. อะตอมของธาตุชนิดเดียวกันมีสมบัติเหมือนกัน แต่จะมีสมบัติ แตกต่างจากอะตอมของธาตุอื่น 
3. สารประกอบเกิดจากอะตอมของธาตุมากกว่าหนึ่งชนิดทำปฏิกิริยา เคมีกันในอัตราส่วนที่เป็นเลขลงตัวน้อยๆ 
จอห์น ดอลตัน ชาวอังกฤษ เสนอทฤษฎีอะตอมของดอลตัน 
- อะตอมเป็นอนุภาคที่เล็กที่สุด แบ่งแยกอีกไม่ได้
- อะตอมของธาตุชนิดเดียวกันมีสมบัติเหมือนกัน
- อะตอมต้องเกิดจากสารประกอบเกิดจากอะตอมของธาตุตั้งแต่ 2 ชนิดขึ้นไปมารวมตัวกันทางเคมี
ทฤษฎีอะตอมของดอลตันใช้อธิบายลักษณะและสมบัติของอะตอมได้เพียงระดับหนึ่ง แต่ต่อมานักวิทยาศาสตร์ค้นพบข้อมูลบางประการที่ไม่สอดคล้องกับทฤษฎีอะตอมของ ดอลตัน เช่น พบว่าอะตอมของธาตุชนิดเดียวกันอาจมีมวลแตกต่างกันได้   
ลักษณะแบบจำลองอะตอมของดอลตัน
 
ทรงกลมตันมีขนาดเล็กที่สุดซึ้งแบ่งแยกอีกไม่ได้
แบบจำลองอะตอมของทอมสัน
เซอร์โจเซฟ จอห์น ทอมสัน นักวิทยาศาสตร์ชาวอังกฤษ ได้ทำการศึกษาและทดลองเกี่ยวกับการนำไฟฟ้าของก๊าซโดยใช้หลอดรังสีแคโทด
 
หลอดรังสีแคโทด 
เป็นเครื่องที่ใช่ทดลองเกี่ยวกับการนำไฟฟ้าโดยหลอดรังสีแคโทดจะมีความดันต่ำมาก และความต่างศักย์สูงมาก วิลเลียม ครูกส์ได้สร้างหลอดรังสีแคโทดขึ้นมาโดยใช้แผ่นโลหะ 2 แผ่นเป็นขั้วไฟฟ้า โดยต่อขั้วไฟฟ้าลบกับขั้วลบของเครื่องกำเนิดไฟฟ้าเรียกว่า แคโทด และต่อขั้วไฟฟ้าบวกเข้ากับขั้วบวกของเครื่องกำเนิดไฟฟ้าเรียกว่า แอโนด
  
การค้นพบอิเล็กตรอน 
เซอร์โจเซฟ จอห์น ทอมสัน ดัดแปลงหลอดรังสีใหม่ ดังรูป
 
รังสีพุ่งจากด้าแคโทดไปยังด้านแอโนด และจะมีรังสีส่วนหนึ่งทะลุออกไปกระทบกับฉากเรืองแสง 
หลังจากนั้นทอมสันได้เพิ่มขั้วไฟฟ้าเข้าไปในหลอดรังสีแคโทดดังรูป
 
ปรากฎว่า รังสีนี้จะเบี่ยงเบนเข้าหาขั้วบวก แสดงว่า รังสีนี้ต้องเป็นประจุลบ แต่ไม่ทราบว่าเกิดจากก๊าซในหลอดรังสีแคโทด หรือเกิดจากขั้วไฟฟ้าทอมสันจึงทำการทดลองเกี่ยวกับการนำไฟฟ้าของก๊าซในหลอดรังสีแคโทด พบว่า ไม่ว่าจะใช้ก๊าซใดบรรจุในหลอดหรือใช้โลหะใดเป็นแคโทด จะได้ผลการทดลองเหมือนเดิม จึงสรุปได้ว่า อะตอมทุกชนิดมีอนุภาคที่มีประจุลบเป็นองค์ประกอบ เรียกว่า "อิเล็กตรอน"
การค้นพบโปรตอน 
เนื่องจากอะตอมเป็นกลางทางไฟฟ้า และการที่พบว่าอะตอมของธาตุทุกชนิดประกอบด้วยอิเล็กตรอนซึ่งมีประจุไฟฟ้าเป็นลบ ทำให้นักวิทยาศาสตร์เชื่อว่าองค์ประกอบอีกส่วนหนึ่งของอะตอม จะต้องมีประจุบวกด้วย ออยแกน โกลด์สไตน์ (Eugen Goldstein) นักวิทยาศาสตร์ชาวเยอรมัน ได้ทดลองเกี่ยวกับหลอดรังสีแคโทด โดยดัดแปลงหลอดรังสีแคโทด ดังรูป
  
  
ผลการทดลองของโกสไตน์
เมื่อผ่านกระแสไฟฟ้า ปรากฏว่ามีจุดสว่างเกิดขึ้นทั้งฉากเรืองแสง ก. และฉากเรืองแสง ข.
โกลสไตน์ได้อธิบายว่า จุดเรืองแสงที่เกิดขึ้นบนฉากเรืองแสง ก. จะต้องเกิดจากที่ประกอบด้วยอนุภาคที่มีประจุไฟฟ้าบวก เคลื่อนที่ผ่านรูตรงกลางของแคโทด ไปยังฉากเรืองแสง แต่ยังไม่ทราบว่ารังสีที่มีประจุไฟฟ้าบวกนี้เกิดจากอะตอมของก๊าซ หรือเกิดจากอะตอมของขั้วไฟฟ้า และมีลักษณะเหมือนกันหรือไม่
โกลสไตน์ได้ทดลองเปลี่ยนชนิดของก๊าซในหลอดแก้วปรากฏว่าอนุภาคที่มีประจุไฟฟ้าบวกเหล่านี้มีอัตราส่วนประจุต่อมวลไม่เท่ากัน ขึ้นอยู่กับชนิดของก๊าซที่ใช้และเมื่อทดลองเปลี่ยนโลหะที่ใช้ทำเป็นขั้วไฟฟ้าหลายๆชนิดแต่ให้ก๊าซในหลอดแก้วชนิดเดียวกัน ปรากฏว่า ผลการทดลองได้อัตราส่วนประจุต่อมวลเท่ากันแสดงว่าอนุภาคบวกในหลอดรังสีแคโทดเกิดจากก๊าซไม่ได้เกิดจากขั้วไฟฟ้า 
สรุปแบบจำลองของทอมสัน 
จากผลการทดลอง ทั้งของทอมสันและโกลด์สไตน์ ทำให้ทอมสันได้ข้อมูลเกี่ยวกับอะตอมมากขึ้น จึงได้เสนอแบบจำลองอะตอม ดังนี้ อะตอมมีลักษณะเป็นทรงกลมประกอบด้วยอนุภาคโปรตอนที่มีประจุไฟฟ้าเป็นบวกและอนุภาคอิเล็กตรอนที่มีประจุไฟฟ้าเป็นลบ กระจัดกระจายอย่างสม่ำเสมอในอะตอมอะตอมที่มีสภาพเป็นกลางทางไฟฟ้าจะมีจำนวนประจุบวกเท่ากับจำนวนประจุลบ
  

เลขอะตอม เลขมวลและไอโซโทป

_______จากการศึกษาเกี่ยวกับโครงสร้างของอะตอม โดยมีข้อมูลต่างๆ จากการทดลองมาสนับสนุน สรุปได้ว่า อะตอมของธาตุต่างๆ จะประกอบด้วยอิเล็กตรอน โปรตอนและนิวตรอน (ยกเว้นอะตอมของธาตุไฮโดรเจน ที่ไม่มีนิวตรอน) ซึ่งมีจำนวนแตกต่างกันไป เลขที่แสดงจ้านวนโปรตอนในนิวเคลียสของอะตอม เรียกว่าเลขอะตอม (atomic number, Z) เลขอะตอมจะเป็นค่าเฉพาะของธาตุ ธาตุชนิดเดียวกันจะมีเลขอะตอมเท่ากันเสมอ ซึ่งที่สภาวะปกติจะมีจำนวนโปรตอนและอิเล็กตรอนเท่ากัน ส่วนเลขที่แสดงจำนวนผลบวกของโปรตอนและจำนวนนิวตรอน เราเรียกว่า เลขมวล (mass number, A) ซึ่งในนิวเคลียสของอะตอม เลขมวลจะมีค่าใกล้เคียงกับเลขของอะตอม โดยผลต่างของเลขมวลกับเลขของอะตอมจะเท่ากับจำนวนนิวตรอนโดยสามารถเขียนสัญลักษณ์นิวเคลียร์ได้ คือ

รูปที่ 1.1 สัญลักษณ์ของธาตุ
ที่มา : http://wasita2536338.blogspot.com/p/24-28-2554.html

         เลขอะตอม คือ จำนวนโปรตอนในนิวเคลียสของแต่ละอะตอมของธาตุ ในอะตอมที่เป็นกลางจะมีจำนวนโปรตอนเท่ากับจ้านวนอิเล็กตรอน ดังนั้นเลขเชิงอะตอมจึงบอกจำนวนของอิเล็กตรอนของธาตุได้ด้วย เนื่องจากอะตอมของธาตุชนิดเดียวกันมีค่าเลขเชิงอะตอมเท่ากันเสมอ เลขเชิงอะตอมจึงป็นเอกลักษณ์ของธาตุชนิดเดียวกัน เช่น เลขเชิงอะตอมของฟอสฟอรัสเท่ากับ 15 นั้นคือทุกๆ อะตอมที่เป็นกลางของฟอสฟอรัสจะมี 15 โปรตอน และมี 15 อิเล็กตรอน และกล่าวได้ว่าอะตอมใดๆ ในจักรวาลถ้ามี 15 โปรตอนแล้ว จะเรียกว่า “ฟอสฟอรัส” ทั้งสิ้น

          เลขมวล คือ ผลรวมของนิวตรอนและโปรตอนที่มีในนิวเคลียสของอะตอมของธาตุ นิวเคลียสในอะตอมอื่นๆ
ทั้งหมดจะมีทั้งโปรตอนและนิวตรอนอยู่ โดยทั่วไปแล้วเลขมวลหาได้ดังนี้
               เลขมวล = จำนวนโปรตอน + จำนวนนิวตรอน
                           = เลขอะตอม + จำนวนนิวตรอน
______จำนวนนิวตรอนในอะตอม = เลขมวล – เลขอะตอม
เช่น  2311Na ธาตุโซเดียม มีจำนวนโปรตอน (Z) = 11
dddddddddddddddddd มีจำนวนนิวตรอน       = A – Z = 23 – 11 = 12
มีจำนวนอิเล็กตรอน    = 11 (เท่ากับจำนวนโปรตอน) 

______ไอโซโทป (isotope) หมายถึง อะตอมของธาตุชนิดเดียวกันที่มีเลขอะตอม (Z) เท่ากัน แต่เลขมวล (A) ไม่เท่ากัน ตัวอย่างเช่น อะตอมของไฮโดรเจนมีเลขมวลสามชนิดโดยแตกต่างกันที่จำนวนนิวตรอน ได้แก่
                ไฮโดรเจน (Hydrogen) มี 1 โปรตอนและไม่มีนิวตรอน มีสัญลักษณ์ 11H
               ดิวทีเรียม (Deuterium) มี 1 โปรตอนและมี 1 นิวตรอน มีสัญลักษณ์ 21H
                ทริเทียม (Tritium)        มี 1 โปรตอนและมี 2 นิวตรอน มีสัญลักษณ์ 31H
    สมบัติทางเคมีของธาตุถูกก้าหนดโดยจำนวนโปรตอนและอิเล็กตรอนในอะตอม นิวตรอนไม่มีส่วนเกี่ยวข้องในการเปลี่ยนแปลงทางเคมีตามปกติ ดังนั้นไอโซโทปของธาตุเดียวกันจึงมีสมบัติทางเคมีเหมือนกันเกิดสารประกอบประเภทเดียวกันและมีความไวต่อปฏิกิริยาเคมีทำนอง

          ไอโซโทน (isotone) หมายถึง อะตอมของธาตุต่างชนิดกันที่มีจำนวนนิวตรอนเท่ากัน แต่จำนวนโปรตอน เลขอะตอมและเลขมวลไม่เท่ากัน เช่น  3919K  4020Ca มีนิวตรอนเท่ากัน คือ  20

          ไอโซบาร์ (isobar) หมายถึง อะตอมของธาตุต่างชนิดกันที่มีเลขมวลเท่ากันแต่เลขอะตอมต่างกัน เช่น 146C  147N

สมบัติของธาตุตามหมู่และตามคาบ

ส่วนที่ 1 ตารางธาตุ ก่อนจะเป็นตารางธาตุ
  • ปี พ.ศ. 2360 โยฮันน์ เดอเบอไรเนอร์ เป็นนักเคมีคนแรกที่พยายามจัดธาตุเป็นกลุ่มๆ ละ 3 ธาตุ ตามสมบัติที่คล้ายคลึงกันเรียกว่า “ชุดสาม” โดยพบว่าธาตุกลางจะมีมวลอะตอมเป็นค่าเฉลี่ยของมวลอะตอมของอีกสองธาตุที่เหลือ เช่น Na เป็นธาตุกลางระหว่าง Li กับ K มีมวลอะตอม 23 ซึ่งเป็นค่าเฉลี่ยนของมวลอะตอมของธาตุ Li ซึ่งมีมวล 7 กับธาตุ K ซึ่งมีมวลอะตอม 39 ดังรูป
ธาตุชุดสาม (ตัวอย่าง)
ธาตุชุดสาม (ตัวอย่าง)
หลักการนี้ใช้ไม่ได้กับธาตุบางชนิด ชุดสามของกลุ่มธาตุบางชนิด ธาตุตรงกลาง มีมวลอะตอมไม่เท่ากับค่าเฉลี่ยของธาตุที่เหลือทั้ง 2
  • ปี พ.ศ. 2407 จอห์น นิวแลนด์ ได้เสนอกฎในการจัดเรียงธาตุเป็นหมวดหมู่ว่า “ถ้าเรียงธาตุตามมวลอะตอมจากน้อยไปหามากพบว่าธาตุที่ 8 จะมีสมบัติเหมือนกับธาตุที่ 1 เสมอ” (ไม่รวมธาตุไฮโดรเจนและแก๊สเฉื่อย)
ธาตุที่ 8 จะมีสมบัติเหมือนกับธาตุที่ 1 เสมอ
ธาตุที่ 8 จะมีสมบัติเหมือนกับธาตุที่ 1 เสมอ
  • ปี พ.ศ. 2412 ยูลิอุสโลทาร์ ไมเออร์ และ ดิมิทรี อิวาโนวิช เมนเดเลเอฟ ได้จัดธาตุโดยเรียงตามมวลอะตอมจากน้อยไปมากโดยพบว่าธาตุมีสมบัติคล้ายกันเป็นช่วงๆ เมนเดเลเอฟจึงตั้งกฎที่เรียกว่า กฏพิริออดิก และเรียกตารางธาตุว่า ตารางพิริออดิกของเมนเดเลเอฟ
ตารางธาตุของเมนเดเลเอฟ
ตารางธาตุของเมนเดเลเอฟ
  • ต่อมา เฮนรี โมสลีย์ ได้เสนอให้จัดเรียงธาตุตามเลขอะตอม เนื่องจากสมบัติต่างๆ ของธาตุมีความสัมพันธ์กับประจุบวกในนิวเคลียสหรือเลขอะตอมมากกว่ามวลอะตอม ดังนั้น ตารางธาตุปัจจุบันจึงจัดเรียงตามเลขอะตอมจากน้อยไปมาก
ตารางธาตุปัจจุบัน เรียงตามเลขออะตอมจากน้อยไปมาก
ตารางธาตุปัจจุบัน เรียงตามเลขออะตอมจากน้อยไปมาก
สรุปเกี่ยวกับตารางธาตุ แบ่งธาตุในแนวตั้ง (หมู่) แบ่งออกเป็น 18 แถว โดยธาตุทั้งหมด 18 แถว แบ่งเป็น 2 กลุ่มใหญ่ คือ
– กลุ่ม A  มี  8  หมู่ คือ  IA  ถึง VIIIA
– กลุ่ม B  มี  8  หมู่ คือ  IB  ถึง VIIIB  เรียกว่า ธาตุแทรนซิชัน (Transition)
โดย
  • ธาตุหมู่ที่ IA  เรียกว่า “โลหะแอลคาไลน์”  ได้แก่   Li   Na   K   Rb  Cs  และ  Fr
  • ธาตุหมู่ที่ IIA  เรียกว่า  “ โลหะอัลคาไลน์ เอิร์ท”  ได้แก่  Be  Mg  Ca  Sr  Ba และ  Ra
  • ธาตุหมู่ที่  VIIA  เรียกว่า “ธาตุเฮโลเจน (Halogen)” ได้แก่   F , Cl , Br , I  และ  At
  • ธาตุหมู่ที่ VIIIA  เรียกว่า “ก๊าซเฉื่อย (Inert gas or Noble gas)” ได้แก่   He , Ne , Ar , Kr , Xe  และ  Rn
ตารางธาตุในแนวนอนเรียกว่า “คาบ”  แบ่งได้  7  คาบ
  • คาบที่ 6 แบ่งธาตุเป็น 2 กลุ่ม
– กลุ่มแรกมี 18 ธาตุ คือ Cs ถึง Rn
– กลุ่มที่สองมี 14 ธาตุ คือ Ce ถึง Lu เรียกกลุ่มนี้ว่าLantanides
  • คาบที่ 7 แบ่งเป็น 2 กลุ่ม
– กลุ่มแรกเริ่มจาก Fr เป็นต้นไปและมีการค้นพบเกิดขึ้นตลอดเวลา
– กลุ่มสองมี 14 ธาตุคือ Th ถึง Lr เรียงกลุ่มนี้ว่า Actinides
“หมู่เดียวกัน จะมีจำนวนเวเลนซ์อิเล็กตรอนเท่ากัน ซึ่งเท่ากับ เลขประจำหมู่”
“คาบเดียวกัน จะมีจำนวนระดับพลังงานเท่ากัน ซึ่งเท่ากับ เลขที่คาบ”
กลุ่ม s, p, d และ f-block สามารถจัดกลุ่มได้ดังรูป
ธาตุในกลุ่ม s, p, d, และ f-block
ธาตุในกลุ่ม s, p, d, และ f-block
การตั้งชื่อธาตุที่ค้นพบใหม่ ตั้งตามระบบ IUPAC (InternationalUnion of Pure and  Applied  Chemistry)
  • ใช้กับธาตุที่มีเลขอะตอมตั้งแต่ 100 ขึ้นไป
  • ให้ตั้งชื่อธาตุโดยระบุเลขอะตอมเป็น ภาษาละติน แล้วลงท้ายด้วย– ium
ระบบการนับเลขในภาษาละติน
0  นิล (nil)
1  อูน (un
2  ไบ (bi)
3  ไตร  (tri) 4  ควอด (quad) 5  เพนท์ (pent) 6  เฮกซ์  (hex) 7  เซปท์  (sept) 8  ออกต์(oct) 9  เอนน์ (enn) ตัวอย่างการเรียกชื่อ
  • ธาตุที่  104  ตามระบบ IUPAC อ่านว่า
Unn+nil+quad+ium  =   Unnilquadium
  • ธาตุที่  105  อ่านว่า
Unn+nil+pent+ium  =   Unnilpentium
ส่วนที่ 2 สมบัติของธาตุตามหมู่และตามคาบ
1. ขนาดอะตอม
การบอกขนาดอะตอมจะบอกโดยใช้รัศมีอะตอม ซึ่งมีค่าเท่ากับครึ่งหนึ่งของระยะระหว่างนิวเคลียสของอะตอมทั้งสองที่มีแรงยึดเหนี่ยวอะตอมไว้ด้วยกันหรือที่อยู่ชิดกัน รัศมีอะตอมมีหลายแบบ ขึ้นอยู่กับชนิดของแรงที่ยึดเหนี่ยวระหว่างอะตอม
– รัศมีโคเวเลนต์ คือ ระยะทางครึ่งหนึ่งของความยาวพันธะโคเวเลนต์ระหว่างอะตอมชนิดเดียวกัน
ตัวอย่างรัศมีโคเวเลนต์
– รัศมีแวนเดอร์วาลล์ คือระยะทางครึ่งหนึ่งของระยะระหว่างนิวเคลียสของอะตอมที่อยู่ใกล้ที่สุด
ตัวอย่างรัศมีแวนเดอร์วาลล์
– รัศมีโลหะ คือ ระยะทางครึ่งหนึ่งของระยะระหว่างนิวเคลียสของอะตอมโลหะที่อยู่ใกล้กันมากที่สุด
ตัวอย่างรัศมีโลหะ
ตัวอย่างรัศมีโลหะ
แนวโน้มขนาดอะตอมในตารางธาตุ
แนวโน้มขนาดอะตอมในตารางธาตุ
แนวโน้มขนาดอะตอมในตารางธาตุ
2. รัศมีไอออน
ไอออน  คือ อะตอมของธาตุ  หรือกลุ่มอะตอมของธาตุที่มีประจุ  คือ ไอออนทุกชนิดจะต้องมีจำนวนโปรตอนไม่เท่ากับอิเล็กตรอนถ้าจำนวนโปรตอนมากกว่าอิเล็กตรอนเป็นไอออนบวก  และถ้ามีจำนวนโปรตอนน้อยกว่าอิเล็กตรอนเป็นไอออนลบ
การบอกขนาดไอออนทำได้เช่นเดียวกับการบอกขนาดอะตอม ซึ่งพิจารณาจากระยะห่างระหว่างนิวเคลียสของไอออนคู่หนึ่งๆ ที่มีแรงยึดเหนี่ยวซึ่งกันและกันในโครงผลึก
ตัวอย่างรัศมีไอออน
แนวโน้มของขนาดไอออนในตารางธาตุ
แนวโน้มขนาดไอออน
แนวโน้มขนาดไอออน
สามารถศึกษาเพิ่มเติมได้ที่ Link: รัศมีไอออน
3. พลังงานไออนไนเซชัน (Ionization Energy; IE)
คือ พลังงานจำนวนน้อยที่สุดที่ใช้ดึงอิเล็กตรอนออกจากอะตอมของธาตุที่เป็นแก๊สครั้งละ 1 อิเล็กตรอนทำให้กลายเป็นไอออนบวกที่เป็นแก๊ส
สามารถเขียนสมการได้ดังนี้
X(g)  +  IE  —->  X+  (g)  +  e
ตัวอย่าง ค่า IEถึง IEของ Li
Li(g)  Li+(g) + e               IE1 = 520 kJ/mol
Li+(g)  Li2+(g) + e            IE2 = 7,394 kJ/mol
Li2+(g)  Li3+(g) + e           IE3 = 11,815 kJ/mol
ตัวอย่างกราฟไอออนไนเซชัน
แนวโน้มค่า IE 
แนวโน้มค่า IE ในตารางธาต
แนวโน้มค่า IE ในตารางธาต
สามารถศึกษาเพิ่มเติมได้ที่ Link: IE หรือ IE (2)
4. อิเล็กโตรเนกาติวิตี (Electronegativity; EN)
คือ  ค่าที่แสดงความสามารถในการดึงอิเล็กตรอนเข้าหาตัวเองของอะตอมของธาตุ  ในพันธะเคมีหนึ่ง  อะตอมที่มีค่า EN สูงจะดึงดูดอิเล็กตรอนได้ดีกว่าอะตอมที่มี  EN ต่ำ
แนวโน้มค่า EN ในตารางธาตุ
แนวโน้มค่า EN ในตารางธาตุ
ลักษณะทั่วไป
  • โลหะทั่วไปมีค่า EN ต่ำกว่า จึงเสียอิเล็กตรอนได้ง่ายกว่าเกิดไอออนบวก อโลหะทั่วไปมีค่า EN สูง จึงชิงอิเล็กตรอนได้ดีเกิดไอออนลบ ธาตุเฉื่อยไม่มีค่า EN
  • ค่า EN ขึ้นอยู่กับ
ก. ขนาดอะตอม หรือจำนวนระดับพลังงาน
ข. ถ้าอะตอมที่มีจำนวนระดับพลังงานเท่ากัน ค่า EN ขึ้นอยู่กับจำนวนโปรตอนในนิวเคลียสเป็นเกณฑ์
5. สัมพรรคภาพอิเล็กตรอน (Electron Affinity; EA)
 สัมพรรคภาพอิเล็กตรอน คือ พลังงาน ที่อะตอมในสถานะแก๊ส คายออกมา เมื่อได้ รับอิเล็กตรอน
แนวโน้มค่า EA
แนวโน้มค่า EA
Screenshot (130)
6. จุดเดือดและจุดหลอมเหลว
แนวโน้มจุดเดือดและจุดหลอมเหลว ตามหมู่
  • หมู่ IA IIA และ IIIA ลดลงจากบนลงล่าง (ลดตามเลขอะตอมที่เพิ่มขึ้น)
  • หมู่ VA VIA VIIA และ VIIIA เพิ่มขึ้นจากบนลงล่าง (เพิ่มตามเลขอะตอม)
  • หมู่ IVA มีแนวโน้มที่ไม่แน่นอน
ตามคาบ
  • หมู่ IA IIA IIIA และ IVA แนวโน้มสูงขึ้น
  • หมู่ IVA มีจุดเดือดและจุดหลอมเหลวสูงที่สุด เพราะบางธาตุมีโครงสร้างเป็นผลึกร่างตาข่าย
  • หมู่ VA VIA VIIA และ VIIIA จุดเดือด จุดหลอมเหลวต่ำ เนื่องจากมีแรงยึดเหนี่ยวระหว่างโมเลกุลที่มีค่าต่ำมาก
7. เลขออกซิเดชัน (Oxidation Number)
เลขออกซิเดชัน คือ เลขที่แสดงถึงค่าประจุไฟฟ้าหรือประจุไฟฟ้าสมมติของไอออนหรืออะตอมของธาตุ
ธาตุแต่ละชนิดมีเลขออกซิเดชันเป็นเท่าไหร่ให้เป็นไปตามเกณฑ์ดังนี้
ตัวอย่างเลขออกซิเดชันของธาตุ
อันตรายจากไอโซโทปกัมมันตรังสี
กิจวัตรต่างๆในชีวิตประจำวันทั้งการรับประทานอาหารดื่มน้ำหายใจด้วยมีโอกาสที่มนุษย์จะได้รับรังสีจากไอโซโทปกัมมันตรังสีเข้าสู่ร่างกายนอกจากนี้ยังได้รับรังสีคอสมิกซึ่งเป็นรังสีที่ส่วนใหญ่มาจากอวกาศและสิ่งต่างๆเหล่านี้มีแหล่งกำเนิดจากธรรมชาตินอกจากนี้บางคนยังได้รับรังสีที่มนุษย์สร้างขึ้นมาเช่นรังสีจากโรงไฟฟ้านิวเคลียร์ แม้มนุษย์จะได้รับรังสีจากกิจวัตรประจำวันแต่การได้รับรังสีจากธรรมชาติหรือจากที่มนุษย์สร้างขึ้นในปริมาณเพียงเล็กน้อยโดยน้อยกว่า 100 มิลลิซีเวิร์ต เซลล์เนื้อเยื่อ สามารถฟื้นตัวได้แต่การได้รับรังสีมากกว่า 100 มิลลิซีเวิร์ต ทำให้เกิดความเสี่ยงต่อสุขภาพได้ เช่นการคลื่นไส้ การอาเจียนอา การปวดหัว การเป็นมะเร็ง สำหรับหน่วยงานที่ทำงานเกี่ยวกับรังสีจะต้องแสดงสัญลักษณ์รังสีลงบนฉลาก ของพันชนะหรือเครื่องมือ รวมทั้งบริเวณใกล้เคียงเพื่อให้ผู้พบเห็นได้ระมัดระวัง สัญลักษณ์รังสีใช้เป็นมาตรฐานจะได้รูปใบพัด 3 แฉกมีสีม่วงอ่อนม่วงเข้มหรือสีดำบนพื้นสีเหลืองดังรูป


เนื่องจากสัญลักษณ์รังสีดังรูปสื่อความหมายไม่ได้ชัดเจนหรือบุคคลที่ไม่เกี่ยวข้องอ่านไม่เข้าใจความหมายดังนั้น ทบวงปรมาณูระหว่างประเทศ และองค์กรระหว่างประเทศว่าด้วยมาตรฐานได้ออกแบบสัญลักษณ์ใหม่เป็นรูปคลื่นของรังสีกะโหลกไขว้และคนกำลังวิ่งดังรูป




2.6.4 ครึ่งชีวิตของไอโซโทปกัมมันตรังสีไอโซโทป
กัมมันตรังสีจะสลายตัวให้รังสีชนิดใดชนิดหนึ่งออกมาได้เองตลอดเวลาไอโซโทปกัมมันตรังสีแต่ละชนิดจะสลายตัวได้เร็วหรือช้าแตกต่างกันอัตราการสลายตัวของไอโซโทปกัมมันตรังสีจะบอกเป็นครึ่งชีวิตใช้สัญลักษณ์ t1/2 โดยหมายถึงระยะเวลาที่นิวเคลียสของไอโซโทปกัมมันตรังสีสลายตัว จนเหลือครึ่งหนึ่งของปริมาณเดิมไอโซโทปกัมมันตรังสีของธาตุชนิดหนึ่งหนึ่งจะมีครึ่งชีวิตคงเดิมไม่ว่าจะอยู่ในรูปของธาตุหรือเกิดเป็นสารประกอบ ตัวอย่างดังรูป



โดยสูตรการคำนวณครึ่งชีวิต มีดังนี้
Nเหลือ = Nเริ่มต้น/2n
T = nt1/2
โดย Nเหลือ แทนปริมาณกัมตรังสีที่เหลือ
T แทนจำนวนเวลาที่ธาตุสลายตัว
Nเริ่มต้น แทนปริมาณกับมมันตรังสีเริ่มต้น
n แทนจำนวนครั้งในการสลายตัวของครึ่งชีวิต

2.6.5 ปฏิกิริยานิวเคลียร์
ปฏิกิริยานิวเคลียร์เป็นการเปลี่ยนแปลงในนิวเคลียสของไอโซโทปกัมมันตรังสีเกิดจากการแตกตัวของนิวเคลียสของอะตอมที่มีขนาดใหญ่หรือเกิดจากการรวมตัวของนิวเคลียสของอะตอมที่มีขนาดเล็กแล้วได้ไอโซโทปใหม่หรือนิวเคลียสของธาตุใหม่รวมทั้งมีพลังงานเกี่ยวข้องกับปฏิกิริยาเป็นจำนวนมหาศาลซึ่งสามารถนำมาใช้ประโยชน์ได้
ในปีพศ. 2482 นักวิทยาศาสตร์ได้ค้นพบว่าเมื่อยิงอนุภาคนิวตรอนไปยังนิวเคลียส U-235 นิวเคลียสจะแตกออกเป็นนิวเคลียสของธาตุที่เบากว่า กระบวนการที่นิวเคลียสของไอโซโทปของธาตุบางชนิดแตกออกเป็นไอโซโทปของธาตุที่เบากว่าดังตัวอย่างที่กล่าวมาแล้วเรียกว่า ฟิชชัน ไอโซโทปของธาตุอื่นที่สามารถเกิดฟิชชันได้ เช่น U-238 การเกิดฟิชชัน แต่ละครั้งจะคายพลังงานออกมาเป็นจำนวนมากและได้ไอโซโทปกัมมันตรังสีหลายชนิดซึ่งถือว่าได้เป็นวิธีผลิตไอโซโทปกัมมันตรังสีที่สำคัญนอกจากนี้ฟิสชั่นยังได้นิวตรอนเกิดขึ้นอีกด้วย ถ้านิวตรอนที่เกิดขึ้นใหม่นี้ชนกับนิวเคลียสอื่นจะเกิดเป็นฟิชชันต่อเนื่องไปเรื่อยๆเรียกปฏิกิริยานี้ว่า ปฏิกิริยาลูกโซ่


ฟิชชันที่เกิดภายในภาวะที่เหมาะสม จะได้จำนวนนิวตรอนเพิ่มขึ้นอย่างรวดเร็วทำให้ฟิชชัน ดำเนินไปอย่างรวดเร็วและปล่อยพลังงานออกมาเป็นจำนวนมหาศาลถ้าไม่สามารถควบคุมปฏิกิริยาได้อาจเกิดการระเบิดรุนแรงหลักการเกิดปฏิกิริยาลูกโซ่ได้นำมาใช้ในการทำระเบิดปรมาณูการควบคุมฟิชชันทำได้หลายวิธี เช่นควบคุมมวลของสารตั้งต้นให้น้อยลงเพื่อให้จำนวนนิวตรอนที่เกิดมีไม่เพียงพอที่จะทำให้เกิดปฏิกิริยาลูกโซ่ได้ ในกรณีที่นิวเคลียสของธาตุเบา 2 ชนิดหลอมรวมกันเกิดเป็นนิวเคลียสใหม่ที่มีมวลสูงกว่า เดิมและให้พลังงานปริมาณมาก ปฏิกิริยานี้เรียกว่า ฟิวชัน ปฏิกิริยาทั้งสองนี้เป็นปฏิกิริยากับที่เกิดบนดวงอาทิตย์การเกิดฟิวชันจะต้องใช้พลังงานเริ่มต้นสูงมากและเอาชนะแรงผลักระหว่างนิวเคลียสที่จะเข้าร่วมกันซึ่งประมาณว่าจะต้องมีอุณหภูมิสูงถึงหลายล้านองศาเซลเซียส พลังงานมหาศาลนี้อ่านได้จากฟิชชันซึ่งเปรียบเสมือนฉนวนที่ทำให้เกิดฟิวชั้น ถ้าพลังงานที่ปล่อยออกมามาจากฟิวชันเกิดขึ้นอย่างรวดเร็วจะเกิดการระเบิดอย่างรุนแรงแต่ถ้าควบคุมให้มีการปล่อยพลังงานออกมาอย่างช้าๆและต่อเนื่องจะให้พลังงานมหาศาลที่เป็นประโยชน์ต่อมนุษย์ฟิวชันมีข้อได้เปรียบมากกว่าฟิชชันหลายประการกล่าวคือคายพลังงานออกมาม่าสารตั้งต้นของฟิวชันหาได้ง่ายและมีปริมาณมากนอกจากนี้ผลิตภัณฑ์ที่เกิดจากฟิวชันเป็นธาตุกัมมันตรังสีที่มีครึ่งชีวิตสั้นและมีอันตรายน้อยกว่า ผลิตภัณฑ์จากการเกิดฟิชชัน แม้จะมีการค้นพบกระบวนการฟิวชั่นมานานแต่ การนำมาใช้อย่างเป็นรูปธรรม เป็นไปได้ยากเพราะการเกิดฟิวชั้นต้องใช้อุณหภูมิสูงมากซึ่งที่สภาวะนี้แสนจะเปลี่ยนเป็นรูป Plasma ซึ่งไม่เสถียรดังนั้นการควบคุมกระบวนการฟิวชันให้เกิดอย่างต่อเนื่องเป็นไปได้ยากมาก
2.6.6 เทคโนโลยีที่เกี่ยวข้องกับการใช้สารกัมมันตรังสี
สารกัมมันตรังสีแต่ละชนิดมีครึ่งชีวิตไม่เท่ากันและแผ่รังสีได้แตกต่างกันการนำสารกัมมันตรังสีมาใช้ประโยชน์จึงแตกต่างกัน
ด้านธรณีวิทยา ใช้ C-14 ซึ่งมีครึ่งชีวิต 5730 ปีหาอายุของวัตถุโบราณที่มีคาร์บอนเป็นองค์ประกอบ เช่นไม้กระดูกการหาอายุโบราณโดยการวัดปริมาณของ C-14 อธิบายได้ว่าในบรรยากาศมี C-14 ซึ่งเกิดจากไนโตรเจนรวมตัวกับนิวตรอนจากรังสีคอสมิก
ด้านการแพทย์ ใช้เพื่อศึกษาความผิดปกติของอวัยวะต่างๆในร่างกายโดยให้คนไข้รับประทานอาหารหรือยาที่มีไอโซโทปกัมมันตรังสีจำนวนเล็กน้อยจากนั้นใช้เครื่องมือตรวจสอบรังสีเพื่อติดตามดูผลการดูดซึมของไอโซโทปกัมมันตรังสีของระบบอวัยวะต่างๆ
ด้านเกษตรกรรม ใช้ไอโซโทปกัมมันตรังสีในการติดตามระยะเวลาของการหมุนเวียนแร่ธาตุในพืชโดยเริ่มจากการดูดซึมที่รากจนถึงการคายออกที่ใบ หรือจำนวนแร่ธาตุที่พืชสะสมไว้ในใบ
ด้านอุตสาหกรรม ใช้ไอโซโทปกัมมันตรังสีกับงานหลายอย่างเช่นใช้ตรวจหารอยตำหนิในโลหะหรือรอยรั่วของท่อขนส่งของเหลวผสมไอโซโทปกัมมันตรังสีกับของเหลวที่จะขนส่งไปตามท่อและติดตามการแผ่รังสีด้วยเครื่องไกเกอร์ มึลเลอร์ เคาน์เตอร์ บริเวณใดที่มี สัญญาณจำนวนนับมากผิดปกติแสดงว่าบริเวณนั้นมีการรั่วไหลเกิดขึ้น
2.7 การนำภาพไปใช้ประโยชน์และผลกระทบต่อสิ่งมีชีวิตมนุษย์
มนษย์นำธาตุุมาใช้ประโยชน์ตั้งแต่อดีตกาลเช่นนำทองคำมาทำเป็นเครื่องประดับ นำเหล็กมาทำเป็นมีน้ำทองใดมาทำเป็นภาชนะหรือเครื่องใช้ ในปัจจุบันมีการค้นพบและศึกษาสมบัติของธาตุมากขึ้นจึงมีการนำธาตุมาใช้ประโยชน์ได้หลากหลายขึ้น
2.7.1 ประโยชน์ของธาตุ
การจำแนกธาตุออกเป็นกลุ่มนอกจากจะช่วยให้ง่ายต่อการศึกษาสมบัติของธาตุแล้วยังง่ายต่อการพิจารณาสมบัติที่เหมาะสมในการนำไปประยุกต์ใช้งานอีกด้วย
-ธาตุโลหะ มีสมบัติการนำความร้อนและไฟฟ้าได้ดีจึงนิยมนำมาเป็นอุปกรณ์นำไฟฟ้าเช่นนำทองแดงมาทำสายไฟน้ำสังกะสีมาทำขั้วไฟฟ้าของถ่านไฟฉาย
-ธาตุกึ่งโลหะ เช่นซิลิกอน เจอร์เมเนียม มีสมบัติก้ำกึ่งระหว่างโลหะกับโลหะ นำไฟฟ้าได้แต่นำไม่ดีนิยมนำมาทำเป็นสารกึ่งตัวนำ
-ธาตุหมู่ 18 เป็นธาตุที่เฉยต่อการเกิดปฏิกิริยาจึงนำมาใช้ประโยชน์ตามสมบัติของแก๊สมีสกุลเช่นนำ-ฮีเลียมซึ่งมีความหนาแน่นน้อยกว่าอากาศมาบรรจุในบอลลูนและเรือเหาะแทนแก๊สไฮโดรเจน
-ธาตุมีไอโซโทปกัมมันตรังสี สามารถนำมาใช้ประโยชน์ได้ดังที่กล่าวไว้ในหัวข้อ 2.6.6 และธาตุุที่อยู่กลุ่มเดียวกันจะมีสมบัติคล้ายกันแต่ถ้าชุดชนิดยังมีสมบัติเฉพาะตัวที่แตกต่างกันด้วยดังนั้นการนำไปใช้ประโยชน์จึงมีความจำเพาะแตกต่างกันการที่ธาตุแต่ละชนิดมีสมบัติเฉพาะตัวแตกต่างกันทำให้บางครั้งนักวิทยาศาสตร์ต้องนำธาตุมากกว่า 1 ชนิดมาละลายหรือผสมกันเพื่อให้มีสมบัติตามที่ต้องการและนำไปใช้ประโยชน์ได้หลากหลายมากขึ้น
2.7.2 ผลกระทบต่อสิ่งมีชีวิตและสิ่งแวดล้อม
จากความรู้เดิมโครงสร้างมาแล้วว่าธาตุบางชนิดส่งผลกระทบต่อสิ่งมีชีวิตและสิ่งแวดล้อมเช่นตะกั่วได้ถูกใช้ในอุตสาหกรรมผลิตแบตเตอรี่ ล้วนส่งผลกระทบต่อสิ่งมีชีวิตเช่นถ้าตะกั่วปนเปื้อนในน้ำอาจจะส่งผลต่อการเจริญเติบพันธ์ระบบโลหิตและระบบประสาทของสัตว์ในแหล่งน้ำนั้นได้

ไม่มีความคิดเห็น:

แสดงความคิดเห็น

อันตราย! ผักไทยพบสารเคมีตกค้างเกือบ 100% แทบทุกชนิด

ไม่ว่าจะช่วงเทศกาล กินเจ  หรือช่วงปกติ การทานผักเป็นเรื่องที่เราควรทำเป็นประจำ เพื่อ สุขภาพ ที่ดี แต่ข่าวร้ายคือ คณะเทคนิคการแพทย์ มหา...