ส่วนที่ 1 ตารางธาตุ ก่อนจะเป็นตารางธาตุ
ปี พ.ศ. 2360 โยฮันน์ เดอเบอไรเนอร์ เป็นนักเคมีคนแรกที่พยายามจัดธาตุเป็นกลุ่มๆ ละ 3 ธาตุ ตามสมบัติที่คล้ายคลึงกันเรียกว่า “ชุดสาม ” โดยพบว่าธาตุกลางจะมีมวลอะตอมเป็นค่าเฉลี่ยของมวลอะตอมของอีกสองธาตุที่เหลือ เช่น Na เป็นธาตุกลางระหว่าง Li กับ K มีมวลอะตอม 23 ซึ่งเป็นค่าเฉลี่ยนของมวลอะตอมของธาตุ Li ซึ่งมีมวล 7 กับธาตุ K ซึ่งมีมวลอะตอม 39 ดังรูป
ธาตุชุดสาม (ตัวอย่าง)
หลักการนี้ใช้ไม่ได้กับธาตุบางชนิด ชุดสามของกลุ่มธาตุบางชนิด ธาตุตรงกลาง มีมวลอะตอมไม่เท่ากับค่าเฉลี่ยของธาตุที่เหลือทั้ง 2
ปี พ.ศ. 2407 จอห์น นิว แลนด์ ได้เสนอกฎในการจัดเรียงธาตุเป็นหมวดหมู่ว่า “ถ้าเรียงธาตุตามมวลอะตอมจากน้อยไปหามากพบว่าธาตุที่ 8 จะมีสมบัติเหมือนกับธาตุที่ 1 เสมอ ” (ไม่รวมธาตุไฮโดรเจนและแก๊สเฉื่อย)
ธาตุที่ 8 จะมีสมบัติเหมือนกับธาตุที่ 1 เสมอ
ปี พ.ศ. 2412 ยูลิ อุสโลทาร์ ไม เออร์ และ ดิมิท รี อิ วา – โน วิช เมน เดเลเอฟ ได้จัดธาตุโดยเรียงตามมวลอะตอมจากน้อยไปมาก โดยพบว่าธาตุมีสมบัติคล้ายกันเป็นช่วงๆ เมนเดเลเอฟจึงตั้งกฎที่เรียกว่า กฏพิ ริออดิก และเรียกตารางธาตุว่า ตารางพิ ริออดิกของเมน เดเลเอฟ
ตารางธาตุของเมนเดเลเอฟ
ต่อมา เฮนรี โมสลีย์ ได้เสนอให้จัดเรียงธาตุตามเลขอะตอม เนื่องจากสมบัติต่างๆ ของธาตุมีความสัมพันธ์กับประจุบวกในนิวเคลียสหรือเลขอะตอมมากกว่ามวลอะตอม ดังนั้น ตารางธาตุปัจจุบันจึงจัดเรียงตามเลขอะตอมจากน้อยไปมาก
ตารางธาตุปัจจุบัน เรียงตามเลขออะตอมจากน้อยไปมาก
สรุปเกี่ยวกับตารางธาตุ แบ่งธาตุในแนวตั้ง (หมู่) แบ่งออกเป็น 18 แถว โดยธาตุทั้งหมด 18 แถว แบ่งเป็น 2 กลุ่มใหญ่ คือ
– กลุ่ม A มี 8 หมู่ คือ IA ถึง VIIIA
– กลุ่ม B มี 8 หมู่ คือ IB ถึง VIIIB เรียกว่า ธาตุแทรนซิชัน (Transition)
โดย
ธาตุหมู่ที่ IA เรียกว่า “โลหะ แอลคาไลน์ ” ได้แก่ Li Na K Rb Cs และ Fr
ธาตุหมู่ที่ IIA เรียกว่า “ โลหะอัลคาไลน์ เอิร์ท ” ได้แก่ Be Mg Ca Sr Ba และ Ra
ธาตุหมู่ที่ VIIA เรียกว่า “ธาตุเฮโลเจน (Halogen)” ได้แก่ F , Cl , Br , I และ At
ธาตุหมู่ที่ VIIIA เรียกว่า “ก๊าซเฉื่อย (Inert gas or Noble gas) ” ได้แก่ He , Ne , Ar , Kr , Xe และ Rn
ตารางธาตุในแนวนอนเรียกว่า “คาบ ” แบ่งได้ 7 คาบ
คาบที่ 6 แบ่งธาตุเป็น 2 กลุ่ม
– กลุ่มแรกมี 18 ธาตุ คือ Cs ถึง Rn
– กลุ่มที่สองมี 14 ธาตุ คือ Ce ถึง Lu เรียกกลุ่มนี้ว่าLantanides
คาบที่ 7 แบ่งเป็น 2 กลุ่ม
– กลุ่มแรกเริ่มจาก Fr เป็นต้นไปและมีการค้นพบเกิดขึ้นตลอดเวลา
– กลุ่มสองมี 14 ธาตุคือ Th ถึง Lr เรียงกลุ่มนี้ว่า Actinides
“หมู่เดียวกัน จะมีจำนวนเวเลนซ์อิเล็กตรอนเท่ากัน ซึ่งเท่ากับ เลขประจำหมู่”
“คาบเดียวกัน จะมีจำนวนระดับพลังงานเท่ากัน ซึ่งเท่ากับ เลขที่คาบ”
กลุ่ม s, p, d และ f-block สามารถจัดกลุ่มได้ดังรูป
ธาตุในกลุ่ม s, p, d, และ f-block
การตั้งชื่อธาตุที่ค้นพบใหม่ ตั้งตามระบบ IUPAC ( International Union of Pure and Applied Chemistry )
ใช้กับธาตุที่มีเลขอะตอมตั้งแต่ 100 ขึ้นไป
ให้ตั้งชื่อธาตุโดยระบุเลขอะตอมเป็น ภาษา ละ ติน แล้วลงท้ายด้วย– ium
ระบบการนับเลขในภาษาละ ติน
0 นิล ( nil )
1 อูน ( un )
2 ไบ ( bi )
3 ไตร ( tri ) 4 คว อด ( quad ) 5 เพนท์ ( pent ) 6 เฮกซ์ ( hex ) 7 เซปท์ ( s ept ) 8 ออกต์ ( oct ) 9 เอนน์ ( enn ) ตัวอย่างการเรียกชื่อ
ธาตุที่ 104 ตามระบบ IUPAC อ่านว่า
Unn+nil+quad+ium = Unnilquadium
Unn+nil+pent+ium = Unnilpentium
ส่วนที่ 2 สมบัติของธาตุตามหมู่และตามคาบ
1. ขนาดอะตอม
การบอกขนาดอะตอมจะบอกโดยใช้รัศมีอะตอม ซึ่งมีค่าเท่ากับครึ่งหนึ่งของระยะระหว่างนิวเคลียสของอะตอมทั้งสองที่มีแรงยึดเหนี่ยวอะตอมไว้ด้วยกันหรือที่อยู่ชิดกัน รัศมีอะตอมมีหลายแบบ ขึ้นอยู่กับชนิดของแรงที่ยึดเหนี่ยวระหว่างอะตอม
– รัศมีโคเวเลนต์ คือ ระยะทางครึ่งหนึ่งของความยาวพันธะโคเวเลนต์ระหว่างอะตอมชนิดเดียวกัน
ตัวอย่างรัศมีโคเวเลนต์
– รัศมีแวนเดอร์วาลล์ คือระยะทางครึ่งหนึ่งของระยะระหว่างนิวเคลียสของอะตอมที่อยู่ใกล้ที่สุด
ตัวอย่างรัศมีแวนเดอร์วาลล์
– รัศมีโลหะ คือ ระยะทางครึ่งหนึ่งของระยะระหว่างนิวเคลียสของอะตอมโลหะที่อยู่ใกล้กันมากที่สุด
ตัวอย่างรัศมีโลหะ
แนวโน้มขนาดอะตอมในตารางธาตุ
แนวโน้มขนาดอะตอมในตารางธาตุ
2. รัศมีไอออน
ไอออน คือ อะตอมของธาตุ หรือกลุ่มอะตอมของธาตุที่มีประจุ คือ ไอออนทุกชนิดจะต้องมีจำนวนโปรตอนไม่เท่ากับอิเล็กตรอนถ้าจำนวนโปรตอนมากกว่าอิเล็กตรอนเป็นไอออนบวก และถ้ามีจำนวนโปรตอนน้อยกว่าอิเล็กตรอนเป็นไอออนลบ
การบอกขนาดไอออนทำได้เช่นเดียวกับการบอกขนาดอะตอม ซึ่งพิจารณาจากระยะห่างระหว่างนิวเคลียสของไอออนคู่หนึ่งๆ ที่มีแรงยึดเหนี่ยวซึ่งกันและกันในโครงผลึก
ตัวอย่างรัศมีไอออน
แนวโน้มของขนาดไอออนในตารางธาตุ
แนวโน้มขนาดไอออน
3. พลังงาน ไออน ไนเซชัน ( Ionization Energy; IE)
คือ พลังงานจำนวนน้อยที่สุดที่ใช้ดึงอิเล็กตรอนออกจากอะตอมของธาตุที่เป็นแก๊สครั้งละ 1 อิเล็กตรอนทำให้กลายเป็นไอออนบวกที่เป็นแก๊ส
สามารถเขียนสมการได้ดังนี้
X ( g ) + IE —- > X + ( g ) + e –
ตัวอย่าง ค่า IE1 ถึง IE3 ของ Li
Li(g) Li+ (g) + e– IE1 = 520 kJ/mol
Li+ (g) Li2+ (g) + e– IE2 = 7,394 kJ/mol
Li2+ (g) Li3+ (g) + e– IE3 = 11,815 kJ/mol
ตัวอย่างกราฟไอออนไนเซชัน
แนวโน้มค่า IE
แนวโน้มค่า IE ในตารางธาต
สามารถศึกษาเพิ่มเติมได้ที่ Link: IE หรือ IE (2)
4. อิเล็กโตรเน กาติวิตี ( Electronegativity; EN)
คือ ค่าที่แสดงความสามารถในการดึงอิเล็กตรอนเข้าหาตัวเองของอะตอมของธาตุ ในพันธะเคมีหนึ่ง อะตอมที่มีค่า EN สูงจะดึงดูดอิเล็กตรอนได้ดีกว่าอะตอมที่มี EN ต่ำ
แนวโน้มค่า EN ในตารางธาตุ
ลักษณะทั่วไป
โลหะทั่วไปมีค่า EN ต่ำกว่า จึงเสียอิเล็กตรอนได้ง่ายกว่าเกิดไอออนบวก อโลหะทั่วไปมีค่า EN สูง จึงชิงอิเล็กตรอนได้ดีเกิดไอออนลบ ธาตุเฉื่อยไม่มีค่า EN
ค่า EN ขึ้นอยู่กับ
ก. ขนาดอะตอม หรือจำนวนระดับพลังงาน
ข. ถ้าอะตอมที่มีจำนวนระดับพลังงานเท่ากัน ค่า EN ขึ้นอยู่กับจำนวนโปรตอนในนิวเคลียสเป็นเกณฑ์
5. สัม พรรคภาพอิเล็กตรอน ( Electron Affinity; EA)
สัม พรรคภาพอิเล็กตรอน คือ พลังงาน ที่อะตอมในสถานะแก๊ส คายออกมา เมื่อได้ รับ อิเล็กตรอน
แนวโน้มค่า EA
6. จุดเดือดและจุดหลอมเหลว
แนวโน้มจุดเดือดและจุดหลอมเหลว ตามหมู่
หมู่ IA IIA และ IIIA ลดลงจากบนลงล่าง (ลดตามเลขอะตอมที่เพิ่มขึ้น)
หมู่ VA VIA VIIA และ VIIIA เพิ่มขึ้นจากบนลงล่าง (เพิ่มตามเลขอะตอม)
หมู่ IVA มีแนวโน้มที่ไม่แน่นอน
ตามคาบ
หมู่ IA IIA IIIA และ IVA แนวโน้มสูงขึ้น
หมู่ IVA มีจุดเดือดและจุดหลอมเหลวสูงที่สุด เพราะบางธาตุมีโครงสร้างเป็นผลึกร่างตาข่าย
หมู่ VA VIA VIIA และ VIIIA จุดเดือด จุดหลอมเหลวต่ำ เนื่องจากมีแรงยึดเหนี่ยวระหว่างโมเลกุลที่มีค่าต่ำมาก
7. เลขออกซิเดชัน ( Oxidation Number)
เลขออกซิเดชัน คือ เลขที่แสดงถึงค่าประจุไฟฟ้าหรือประจุไฟฟ้าสมมติของไอออนหรืออะตอมของธาตุ
ธาตุแต่ละชนิดมีเลขออกซิเดชันเป็นเท่าไหร่ให้เป็นไปตามเกณฑ์ดังนี้
ตัวอย่างเลขออกซิเดชันของธาตุ
อันตรายจากไอโซโทปกัมมันตรังสี กิจวัตรต่างๆในชีวิตประจำวันทั้งการรับประทานอาหารดื่มน้ำหายใจด้วยมีโอกาสที่มนุษย์จะได้รับรังสีจากไอโซโทปกัมมันตรังสีเข้าสู่ร่างกายนอกจากนี้ยังได้รับรังสีคอสมิกซึ่งเป็นรังสีที่ส่วนใหญ่มาจากอวกาศและสิ่งต่างๆเหล่านี้มีแหล่งกำเนิดจากธรรมชาตินอกจากนี้บางคนยังได้รับรังสีที่มนุษย์สร้างขึ้นมาเช่นรังสีจากโรงไฟฟ้านิวเคลียร์ แม้มนุษย์จะได้รับรังสีจากกิจวัตรประจำวันแต่การได้รับรังสีจากธรรมชาติหรือจากที่มนุษย์สร้างขึ้นในปริมาณเพียงเล็กน้อยโดยน้อยกว่า 100 มิลลิซีเวิร์ต เซลล์เนื้อเยื่อ สามารถฟื้นตัวได้แต่การได้รับรังสีมากกว่า 100 มิลลิซีเวิร์ต ทำให้เกิดความเสี่ยงต่อสุขภาพได้ เช่นการคลื่นไส้ การอาเจียนอา การปวดหัว การเป็นมะเร็ง สำหรับหน่วยงานที่ทำงานเกี่ยวกับรังสีจะต้องแสดงสัญลักษณ์รังสีลงบนฉลาก ของพันชนะหรือเครื่องมือ รวมทั้งบริเวณใกล้เคียงเพื่อให้ผู้พบเห็นได้ระมัดระวัง สัญลักษณ์รังสีใช้เป็นมาตรฐานจะได้รูปใบพัด 3 แฉกมีสีม่วงอ่อนม่วงเข้มหรือสีดำบนพื้นสีเหลืองดังรูป
เนื่องจากสัญลักษณ์รังสีดังรูปสื่อความหมายไม่ได้ชัดเจนหรือบุคคลที่ไม่เกี่ยวข้องอ่านไม่เข้าใจความหมายดังนั้น ทบวงปรมาณูระหว่างประเทศ และองค์กรระหว่างประเทศว่าด้วยมาตรฐานได้ออกแบบสัญลักษณ์ใหม่เป็นรูปคลื่นของรังสีกะโหลกไขว้และคนกำลังวิ่งดังรูป
2.6.4 ครึ่งชีวิตของไอโซโทปกัมมันตรังสีไอโซโทป กัมมันตรังสีจะสลายตัวให้รังสีชนิดใดชนิดหนึ่งออกมาได้เองตลอดเวลาไอโซโทปกัมมันตรังสีแต่ละชนิดจะสลายตัวได้เร็วหรือช้าแตกต่างกันอัตราการสลายตัวของไอโซโทปกัมมันตรังสีจะบอกเป็นครึ่งชีวิตใช้สัญลักษณ์ t1/2 โดยหมายถึงระยะเวลาที่นิวเคลียสของไอโซโทปกัมมันตรังสีสลายตัว จนเหลือครึ่งหนึ่งของปริมาณเดิมไอโซโทปกัมมันตรังสีของธาตุชนิดหนึ่งหนึ่งจะมีครึ่งชีวิตคงเดิมไม่ว่าจะอยู่ในรูปของธาตุหรือเกิดเป็นสารประกอบ ตัวอย่างดังรูป
โดยสูตรการคำนวณครึ่งชีวิต มีดังนี้
Nเหลือ = Nเริ่มต้น/2n
T = nt1/2
โดย Nเหลือ แทนปริมาณกัมตรังสีที่เหลือ
T แทนจำนวนเวลาที่ธาตุสลายตัว
Nเริ่มต้น แทนปริมาณกับมมันตรังสีเริ่มต้น
n แทนจำนวนครั้งในการสลายตัวของครึ่งชีวิต
2.6.5 ปฏิกิริยานิวเคลียร์ ปฏิกิริยานิวเคลียร์เป็นการเปลี่ยนแปลงในนิวเคลียสของไอโซโทปกัมมันตรังสีเกิดจากการแตกตัวของนิวเคลียสของอะตอมที่มีขนาดใหญ่หรือเกิดจากการรวมตัวของนิวเคลียสของอะตอมที่มีขนาดเล็กแล้วได้ไอโซโทปใหม่หรือนิวเคลียสของธาตุใหม่รวมทั้งมีพลังงานเกี่ยวข้องกับปฏิกิริยาเป็นจำนวนมหาศาลซึ่งสามารถนำมาใช้ประโยชน์ได้ ในปีพศ. 2482 นักวิทยาศาสตร์ได้ค้นพบว่าเมื่อยิงอนุภาคนิวตรอนไปยังนิวเคลียส U-235 นิวเคลียสจะแตกออกเป็นนิวเคลียสของธาตุที่เบากว่า กระบวนการที่นิวเคลียสของไอโซโทปของธาตุบางชนิดแตกออกเป็นไอโซโทปของธาตุที่เบากว่าดังตัวอย่างที่กล่าวมาแล้วเรียกว่า ฟิชชัน ไอโซโทปของธาตุอื่นที่สามารถเกิดฟิชชันได้ เช่น U-238 การเกิดฟิชชัน แต่ละครั้งจะคายพลังงานออกมาเป็นจำนวนมากและได้ไอโซโทปกัมมันตรังสีหลายชนิดซึ่งถือว่าได้เป็นวิธีผลิตไอโซโทปกัมมันตรังสีที่สำคัญนอกจากนี้ฟิสชั่นยังได้นิวตรอนเกิดขึ้นอีกด้วย ถ้านิวตรอนที่เกิดขึ้นใหม่นี้ชนกับนิวเคลียสอื่นจะเกิดเป็นฟิชชันต่อเนื่องไปเรื่อยๆเรียกปฏิกิริยานี้ว่า ปฏิกิริยาลูกโซ่
ฟิชชันที่เกิดภายในภาวะที่เหมาะสม จะได้จำนวนนิวตรอนเพิ่มขึ้นอย่างรวดเร็วทำให้ฟิชชัน ดำเนินไปอย่างรวดเร็วและปล่อยพลังงานออกมาเป็นจำนวนมหาศาลถ้าไม่สามารถควบคุมปฏิกิริยาได้อาจเกิดการระเบิดรุนแรงหลักการเกิดปฏิกิริยาลูกโซ่ได้นำมาใช้ในการทำระเบิดปรมาณูการควบคุมฟิชชันทำได้หลายวิธี เช่นควบคุมมวลของสารตั้งต้นให้น้อยลงเพื่อให้จำนวนนิวตรอนที่เกิดมีไม่เพียงพอที่จะทำให้เกิดปฏิกิริยาลูกโซ่ได้ ในกรณีที่นิวเคลียสของธาตุเบา 2 ชนิดหลอมรวมกันเกิดเป็นนิวเคลียสใหม่ที่มีมวลสูงกว่า เดิมและให้พลังงานปริมาณมาก ปฏิกิริยานี้เรียกว่า ฟิวชัน ปฏิกิริยาทั้งสองนี้เป็นปฏิกิริยากับที่เกิดบนดวงอาทิตย์การเกิดฟิวชันจะต้องใช้พลังงานเริ่มต้นสูงมากและเอาชนะแรงผลักระหว่างนิวเคลียสที่จะเข้าร่วมกันซึ่งประมาณว่าจะต้องมีอุณหภูมิสูงถึงหลายล้านองศาเซลเซียส พลังงานมหาศาลนี้อ่านได้จากฟิชชันซึ่งเปรียบเสมือนฉนวนที่ทำให้เกิดฟิวชั้น ถ้าพลังงานที่ปล่อยออกมามาจากฟิวชันเกิดขึ้นอย่างรวดเร็วจะเกิดการระเบิดอย่างรุนแรงแต่ถ้าควบคุมให้มีการปล่อยพลังงานออกมาอย่างช้าๆและต่อเนื่องจะให้พลังงานมหาศาลที่เป็นประโยชน์ต่อมนุษย์ฟิวชันมีข้อได้เปรียบมากกว่าฟิชชันหลายประการกล่าวคือคายพลังงานออกมาม่าสารตั้งต้นของฟิวชันหาได้ง่ายและมีปริมาณมากนอกจากนี้ผลิตภัณฑ์ที่เกิดจากฟิวชันเป็นธาตุกัมมันตรังสีที่มีครึ่งชีวิตสั้นและมีอันตรายน้อยกว่า ผลิตภัณฑ์จากการเกิดฟิชชัน แม้จะมีการค้นพบกระบวนการฟิวชั่นมานานแต่ การนำมาใช้อย่างเป็นรูปธรรม เป็นไปได้ยากเพราะการเกิดฟิวชั้นต้องใช้อุณหภูมิสูงมากซึ่งที่สภาวะนี้แสนจะเปลี่ยนเป็นรูป Plasma ซึ่งไม่เสถียรดังนั้นการควบคุมกระบวนการฟิวชันให้เกิดอย่างต่อเนื่องเป็นไปได้ยากมาก 2.6.6 เทคโนโลยีที่เกี่ยวข้องกับการใช้สารกัมมันตรังสี สารกัมมันตรังสีแต่ละชนิดมีครึ่งชีวิตไม่เท่ากันและแผ่รังสีได้แตกต่างกันการนำสารกัมมันตรังสีมาใช้ประโยชน์จึงแตกต่างกัน ด้านธรณีวิทยา ใช้ C-14 ซึ่งมีครึ่งชีวิต 5730 ปีหาอายุของวัตถุโบราณที่มีคาร์บอนเป็นองค์ประกอบ เช่นไม้กระดูกการหาอายุโบราณโดยการวัดปริมาณของ C-14 อธิบายได้ว่าในบรรยากาศมี C-14 ซึ่งเกิดจากไนโตรเจนรวมตัวกับนิวตรอนจากรังสีคอสมิก ด้านการแพทย์ ใช้เพื่อศึกษาความผิดปกติของอวัยวะต่างๆในร่างกายโดยให้คนไข้รับประทานอาหารหรือยาที่มีไอโซโทปกัมมันตรังสีจำนวนเล็กน้อยจากนั้นใช้เครื่องมือตรวจสอบรังสีเพื่อติดตามดูผลการดูดซึมของไอโซโทปกัมมันตรังสีของระบบอวัยวะต่างๆด้านเกษตรกรรม ใช้ไอโซโทปกัมมันตรังสีในการติดตามระยะเวลาของการหมุนเวียนแร่ธาตุในพืชโดยเริ่มจากการดูดซึมที่รากจนถึงการคายออกที่ใบ หรือจำนวนแร่ธาตุที่พืชสะสมไว้ในใบด้านอุตสาหกรรม ใช้ไอโซโทปกัมมันตรังสีกับงานหลายอย่างเช่นใช้ตรวจหารอยตำหนิในโลหะหรือรอยรั่วของท่อขนส่งของเหลวผสมไอโซโทปกัมมันตรังสีกับของเหลวที่จะขนส่งไปตามท่อและติดตามการแผ่รังสีด้วยเครื่องไกเกอร์ มึลเลอร์ เคาน์เตอร์ บริเวณใดที่มี สัญญาณจำนวนนับมากผิดปกติแสดงว่าบริเวณนั้นมีการรั่วไหลเกิดขึ้น 2.7 การนำภาพไปใช้ประโยชน์และผลกระทบต่อสิ่งมีชีวิตมนุษย์ มนษย์นำธาตุุมาใช้ประโยชน์ตั้งแต่อดีตกาลเช่นนำทองคำมาทำเป็นเครื่องประดับ นำเหล็กมาทำเป็นมีน้ำทองใดมาทำเป็นภาชนะหรือเครื่องใช้ ในปัจจุบันมีการค้นพบและศึกษาสมบัติของธาตุมากขึ้นจึงมีการนำธาตุมาใช้ประโยชน์ได้หลากหลายขึ้น 2.7.1 ประโยชน์ของธาตุ การจำแนกธาตุออกเป็นกลุ่มนอกจากจะช่วยให้ง่ายต่อการศึกษาสมบัติของธาตุแล้วยังง่ายต่อการพิจารณาสมบัติที่เหมาะสมในการนำไปประยุกต์ใช้งานอีกด้วย -ธาตุโลหะ มีสมบัติการนำความร้อนและไฟฟ้าได้ดีจึงนิยมนำมาเป็นอุปกรณ์นำไฟฟ้าเช่นนำทองแดงมาทำสายไฟน้ำสังกะสีมาทำขั้วไฟฟ้าของถ่านไฟฉาย -ธาตุกึ่งโลหะ เช่นซิลิกอน เจอร์เมเนียม มีสมบัติก้ำกึ่งระหว่างโลหะกับโลหะ นำไฟฟ้าได้แต่นำไม่ดีนิยมนำมาทำเป็นสารกึ่งตัวนำ-ธาตุหมู่ 18 เป็นธาตุที่เฉยต่อการเกิดปฏิกิริยาจึงนำมาใช้ประโยชน์ตามสมบัติของแก๊สมีสกุลเช่นนำ-ฮีเลียมซึ่งมีความหนาแน่นน้อยกว่าอากาศมาบรรจุในบอลลูนและเรือเหาะแทนแก๊สไฮโดรเจน-ธาตุมีไอโซโทปกัมมันตรังสี สามารถนำมาใช้ประโยชน์ได้ดังที่กล่าวไว้ในหัวข้อ 2.6.6 และธาตุุที่อยู่กลุ่มเดียวกันจะมีสมบัติคล้ายกันแต่ถ้าชุดชนิดยังมีสมบัติเฉพาะตัวที่แตกต่างกันด้วยดังนั้นการนำไปใช้ประโยชน์จึงมีความจำเพาะแตกต่างกันการที่ธาตุแต่ละชนิดมีสมบัติเฉพาะตัวแตกต่างกันทำให้บางครั้งนักวิทยาศาสตร์ต้องนำธาตุมากกว่า 1 ชนิดมาละลายหรือผสมกันเพื่อให้มีสมบัติตามที่ต้องการและนำไปใช้ประโยชน์ได้หลากหลายมากขึ้น 2.7.2 ผลกระทบต่อสิ่งมีชีวิตและสิ่งแวดล้อม จากความรู้เดิมโครงสร้างมาแล้วว่าธาตุบางชนิดส่งผลกระทบต่อสิ่งมีชีวิตและสิ่งแวดล้อมเช่นตะกั่วได้ถูกใช้ในอุตสาหกรรมผลิตแบตเตอรี่ ล้วนส่งผลกระทบต่อสิ่งมีชีวิตเช่นถ้าตะกั่วปนเปื้อนในน้ำอาจจะส่งผลต่อการเจริญเติบพันธ์ระบบโลหิตและระบบประสาทของสัตว์ในแหล่งน้ำนั้นได้
ไม่มีความคิดเห็น:
แสดงความคิดเห็น